
Macros: Why, When, and How

Gary Fredericks

(@gfredericks_)

Gary Fredericks Macros: Why, When, and How

Why talk about macros?
Key to my understanding of how Clojure works

The major selling point of Lisp

Safe metaprogramming!

Can be intimidating

Must mentally separate compile-time from runtime

And read-time! haha! oh dear.

Syntax-quote looks like a steaming pile of perl

Appropriate use is a subtle issue

Gary Fredericks Macros: Why, When, and How

What we will talk about
Preliminary concepts (code is data!)

How Clojure macros work (functions on code!)

When to write macros (sometimes!)

What syntax-quote (`) does (three things!)

Gary Fredericks Macros: Why, When, and How

Code as Data

Gary Fredericks Macros: Why, When, and How

Data
Has just one meaning

1: {:name "Jack Kemp"
2: :birthdate [1935 7 13]
3: :favorite-things #{:marmelade :marmite
4: :marmots :marmosets}}

Gary Fredericks Macros: Why, When, and How

Code has two meanings
1: (defn secure-password?
2: "Checks if the password
3: is totes uncrackable."
4: [pw]
5: (and (> (count pw) 6)
6: (.contains pw "$")
7: (.contains pw "1")))

Gary Fredericks Macros: Why, When, and How

Obtaining forms: quote
1: (* 2 3 7) ;; => 42
2:
3: (quote (* 2 3 7)) ;; => (* 2 3 7)
4:
5: '(* 2 3 7) ;; => (* 2 3 7)
6:
7: '(This is a list with (+ 5 2) elements)
8: ;; => '(This is a list with (+ 5 2) elements)

Gary Fredericks Macros: Why, When, and How

Obtaining forms: read-string
 1: (read-string "(* 2 3 7)")
 2: ;; => (* 2 3 7)
 3:
 4: (read-string "foo")
 5: ;; => foo
 6:
 7: (type (read-string "foo"))
 8: ;; => clojure.lang.Symbol
 9:
10: (read-string "'foo")
11: ;; => (quote foo)

Gary Fredericks Macros: Why, When, and How

Building and Manipulating forms 1
1: (reverse '(* 2 3 7))
2: ;; => (7 3 2 *)
3:
4: (take 2 '(* 2 3 7))
5: ;; => (* 2)
6:
7: (let [num (+ 3 2)]
8: '(This list has num elements))
9: ;; => (This list has num elements)

Gary Fredericks Macros: Why, When, and How

Building and Manipulating forms 2
1: (let [num (+ 3 2)]
2: (list 'This 'list 'has num 'elements))
3: ;; => (This list has 5 elements)

Gary Fredericks Macros: Why, When, and How

eval ing forms 1
 1: (eval '(* 2 3 7)) ;; => 42
 2:
 3: (eval (reverse '(5 37 +)))
 4: ;; => 42
 5:
 6: (def does-not-compile '(* 2 3 x))
 7:
 8: (eval does-not-compile)
 9: ;; CompilerException java.lang.RuntimeException:
10: ;; Unable to resolve symbol: x in this context

Gary Fredericks Macros: Why, When, and How

eval ing forms 2
1: (list 'let '[x 7] does-not-compile)
2: ;; => (let [x 7] (* 2 3 x))
3:
4: (eval (list 'let '[x 7] does-not-compile))
5: ;;=> 42

Gary Fredericks Macros: Why, When, and How

(eval (eval '''foo))
 1: ''foo ;; => (quote foo)
 2:
 3: ''''foo
 4: ;; => (quote (quote (quote foo)))
 5:
 6: (eval ''foo) ;; => foo
 7:
 8: (eval (eval '''foo)) ;; => foo
 9:
10: (eval (list 'quote 'foo)) ;; => foo

Gary Fredericks Macros: Why, When, and How

Wat a macro is?
A macro is a function the compiler calls with forms as arguments,
and expects a form to be returned.

Macro calls are replaced at compile time with whatever the macro
returns.

Implication: macros are virtually never necessary to make your
code do something.

Macro call Expanded code

(if-not b v1 v2) (if (not b) v1 v2)

(when b s1 s2) (if b (do s1 s2) nil)

Gary Fredericks Macros: Why, When, and How

Project Euler #4
A palindromic number reads the same both ways.

The largest palindrome made from the product of two 2-digit
numbers is 9009 = 91 * 99

Find the largest palindrome made from the product of two 3-digit
numbers.

Gary Fredericks Macros: Why, When, and How

Partial solution

(for [x (range 100 1000),
 y (range 100 x),
 :let [z (* x y)]
 :when (palindrome? z)]
 z)

Gary Fredericks Macros: Why, When, and How

clojure.core/for
 1: (let [iter__4609__auto__
 2: (fn iter__1163
 3: [s__1164]
 4: (lazy-seq
 5: (loop [s__1164 s__1164]
 6: (when-first [x s__1164]
 7: (let [iterys__4605__auto__
 8: (fn iter__1165
 9: [s__1166]
10: (lazy-seq
11: (loop [s__1166 s__1166]
12: (when-let [s__1166 (seq s__1166)]
13: (if (chunked-seq? s__1166)
14: (let [c__4607__auto__
15: (chunk-first s__1166)
16: size__4608__auto__
17: (int (count c__4607__auto__))
18: b__1168
19: (chunk-buffer size__4608__auto__)]
20: (if (loop [i__1167 (int 0)]
21: (if (< i__1167 size__4608__auto__)
22: (let [y (.nth c__4607__auto__ i__1167)]
23: (let [z (* x y)]
24: (if (palindrome? z)
25: (do
26: (chunk-append b__1168 z)
27: (recur (unchecked-inc i__1167)))
28: (recur (unchecked-inc i__1167)))))
29: true))
30: (chunk-cons
31: (chunk b__1168)
32: (iter__1165 (chunk-rest s__1166)))
33: (chunk-cons
34: (chunk b__1168)
35: nil)))
36: (let [y (first s__1166)]
37: (let [z (* x y)]
38: (if (palindrome? z)
39: (cons z (iter__1165 (rest s__1166)))
40: (recur (rest s__1166))))))))))
41: fs__4606__auto__
42: (seq (iterys__4605__auto__ (range 100 x)))]
43: (if fs__4606__auto__
44: (concat
45: fs__4606__auto__
46: (iter__1163 (rest s__1164)))
47: (recur (rest s__1164))))))))]
48: (iter__4609__auto__ (range 100 1000)))

Gary Fredericks Macros: Why, When, and How

Macro Mechanics

Gary Fredericks Macros: Why, When, and How

Defining a pseudo-macro with defn
1: (defn unless
2: "Takes three expressions and
3: returns a new expression."
4: [condition false-case true-case]
5: (list 'if
6: condition
7: true-case
8: false-case))

Gary Fredericks Macros: Why, When, and How

Using unless (1)
1: (unless (= 1 2)
2: (println "Not equal")
3: (println "Equal"))
4:
5: ;; Prints:
6: ;; Not Equal
7: ;; Equal
8: ;;
9: ;; Returns: (if false nil nil)

Gary Fredericks Macros: Why, When, and How

Using unless (2)
1: (unless '(= 1 2)
2: '(println "Not equal")
3: '(println "Equal"))
4:
5: ;; Returns: (if (= 1 2) (println "Equal") (println "Not equal"))

Gary Fredericks Macros: Why, When, and How

Using unless (3)
1: (eval (unless '(= 1 2)
2: '(println "Not equal")
3: '(println "Equal")))
4:
5: ;; Prints:
6: ;; Not Equal

Gary Fredericks Macros: Why, When, and How

1: (defn unless
2: [condition false-case true-case]
3: (list 'if
4: condition
5: true-case
6: false-case))

1: (defmacro unless
2: [condition false-case true-case]
3: (list 'if
4: condition
5: true-case
6: false-case))

unless as a proper macro

Gary Fredericks Macros: Why, When, and How

Using unless (4)
1: (unless (= 1 2)
2: (println "Not equal")
3: (println "Equal"))
4:
5: ;; Prints:
6: ;; Not Equal

Gary Fredericks Macros: Why, When, and How

Debugging unless
1: (macroexpand-1 '(unless (= 1 2)
2: (println "Not equal")
3: (println "Equal")))
4:
5: ;; => (if (= 1 2) (println "Not equal") (println "Equal"))

Gary Fredericks Macros: Why, When, and How

Defining spy
1: ;; Goal:
2:
3: (spy (* 2 3 7))
4:
5: ;; should print:
6: ;; (* 2 3 7) is 42
7: ;;
8: ;; and return
9: ;; 42

Gary Fredericks Macros: Why, When, and How

spy as a function (1)
 1: (defn spy
 2: [expr]
 3: (println expr "is" expr)
 4: expr)
 5:
 6: (spy (* 2 3 7))
 7: ;; Prints:
 8: ;; 42 is 42
 9: ;; And returns:
10: ;; 42

Gary Fredericks Macros: Why, When, and How

spy as a function (2)
 1: (defn spy
 2: [expr]
 3: (println 'expr "is" expr)
 4: expr)
 5:
 6: (spy (* 2 3 7))
 7: ;; Prints:
 8: ;; expr is 42
 9: ;; And returns:
10: ;; 42

Gary Fredericks Macros: Why, When, and How

spy as a function (3)
 1: (defn spy
 2: [expr value]
 3: (println expr "is" value)
 4: value)
 5:
 6: (spy '(* 2 3 7) (* 2 3 7))
 7: ;; Prints:
 8: ;; (* 2 3 7) is 42
 9: ;; And returns:
10: ;; 42

Gary Fredericks Macros: Why, When, and How

spy as a macro – desired expansion
1: (spy (* 2 3 7))
2:
3: ;; should expand to
4:
5: (let [val (* 2 3 7)]
6: (println '(* 2 3 7) "is" val)
7: val)

Gary Fredericks Macros: Why, When, and How

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println 'expr "is" 'val)
6: 'val))

1: (macroexpand-1 '(spy (* 2 3 7)))
2:
3: ;; Returns:
4:
5: (let [val (* 2 3 7)]
6: (println expr "is" val)
7: val)

spy as a macro – first try

Gary Fredericks Macros: Why, When, and How

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println expr "is" 'val)
6: 'val))

1: (macroexpand-1 '(spy (* 2 3 7)))
2:
3: ;; Returns:
4:
5: (let [val (* 2 3 7)]
6: (println (* 2 3 7) "is" val)
7: val)

spy as a macro – second try

Gary Fredericks Macros: Why, When, and How

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println ''expr "is" 'val)
6: 'val))

1: (macroexpand-1 '(spy (* 2 3 7)))
2:
3: ;; Returns:
4:
5: (let [val (* 2 3 7)]
6: (println (quote expr) "is" val)
7: val)

spy as a macro – third try

Gary Fredericks Macros: Why, When, and How

1: (let [val (* 2 3 7)]
2: (println '(* 2 3 7) "is" val)
3: val)

1: (let [val (* 2 3 7)]
2: (println (quote (* 2 3 7)) "is" val)
3: val)

spy – when ' is confusing

Gary Fredericks Macros: Why, When, and How

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println
6: (list 'quote expr)
7: "is"
8: 'val)
9: 'val))

1: (macroexpand-1 '(spy (* 2 3 7)))
2:
3: ;; Returns:
4:
5: (let [val (* 2 3 7)]
6: (println (quote (* 2 3 7)) "is" val)
7: val)

spy as a macro – fourth try

Gary Fredericks Macros: Why, When, and How

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println
6: (list 'quote expr)
7: "is"
8: 'val)
9: 'val))

1: (defmacro spy
2: [expr]
3: `(let [val# ~expr]
4: (println '~expr "is" val#)
5: val#))

Syntax-quote Preview

Gary Fredericks Macros: Why, When, and How

What can't you do with macros?
Customize or extend reader syntax

New data structure syntax

I want @ to mean something else in this expression

Change the behavior of code you don't control

I want all the clojure.core functions to log their execution
times

Magically change things outside the scope of a macro-call

Change macro-precedence

Gary Fredericks Macros: Why, When, and How

Macros??
Why not to write macros

Commonly tolerated macro usages

Tips for avoiding macros

Tips for writing tolerable macros

Gary Fredericks Macros: Why, When, and How

Don't Write Macros
"The first rule of Macro Club is
Don’t Write Macros."

-- Stuart Halloway

Gary Fredericks Macros: Why, When, and How

Macros are not Functions
Macros cannot be composed at runtime.

1: (reduce or [false true false])
2: ;; => CompilerException java.lang.RuntimeException:
3: ;; Can't take value of a macro: #'clojure.core/or

but you can…

1: (reduce #(or %1 %2) [false true false])
2: ;; => true

Gary Fredericks Macros: Why, When, and How

Macros beget more macros
1: (defmacro macro-reduce
2: [macro-name coll]
3: `(reduce #(~macro-name %1 %2) ~coll))
4:
5: (macro-reduce or [false true false]) ;; => true
6: (macro-reduce or [false false false]) ;; => false
7: (macro-reduce and [false true false]) ;; => false
8: (macro-reduce do [false true false]) ;; => false
9: (macro-reduce do [false true false]) ;; => false

Gary Fredericks Macros: Why, When, and How

Macros beget more more macros
1: ;; In clojure.test
2:
3: (is (= 42 (* 2 3 7)))
4:
5: ;; But I want:
6:
7: (is= 42 (* 2 3 7))

Gary Fredericks Macros: Why, When, and How

Macros can make code hard to understand
The reader has to understand the behavior of each macro
individually to know what a piece of code is doing at the syntactic
level.

Gary Fredericks Macros: Why, When, and How

Don't Write Macros (until it hurts)
Macros are not functions

Macros tend to result in more macros

Macros require special-case understanding

Gary Fredericks Macros: Why, When, and How

Commonly Tolerated Macro Usages 1
Wrapping execution: with-foo

with-redefs , with-open , with-out-str , time , dosync

Delaying execution

delay , future , lazy-seq

Defing things

defn , defmacro , defmulti , defprotocol , defrecord ,
deftype

deftest (clojure.test), defproject (leiningen)

Gary Fredericks Macros: Why, When, and How

Commonly Tolerated Macro Usages 2
Capturing Code

assert , spy , is (clojure.test)

DSLs (Korma, Compojure, midge)

Compile-time Optimizations

Hiccup

(html [:ul [:li foo] [:li {:id "7"} "WAT"]])

String interpolation (clojure.core.strint)

(<< "You have $~(double (/ x 100)) left.")

comment

assert

Gary Fredericks Macros: Why, When, and How

Commonly Tolerated Macro Usages 3
Implementing entirely different paradigms

Logic Programming (core.logic)

Concatenative Programming (factjor)

Gary Fredericks Macros: Why, When, and How

Abstinence Tips
Learn and prefer functional patterns

Function decorators instead of wrapper macros (e.g. ring,
clojure.test fixtures)

Learn about the macros clojure already has

1.5 introduced cond-> , some-> , and as->

Tolerate a bit of repetition for the sake of clarity

Gary Fredericks Macros: Why, When, and How

Tips for Writing Tolerable Macros
Use helper functions!

Many macros can be written in one or two lines by
deferring to a helper function for most of the work

Use naming conventions

Adverbs for execution-wrapping

def-foo if you def something

Though consider (def foo (macro-call)) instead

Don't def more than one thing

Only introduce locals named by the user

(dotimes [n 10] (foo n)) , (run* [q] ...)

No side effects

Gary Fredericks Macros: Why, When, and How

Syntax-quote

Gary Fredericks Macros: Why, When, and How

Syntax-quote
` is an enhanced '

` is independent of macros, but not really useful for anything else.

Complects Combines three different functionalities:

Unquote

Symbol qualification

Gensym

Gary Fredericks Macros: Why, When, and How

Unquote: Problem
This is difficult to read. The shape of the final code gets lost in the
calls to list .

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println (list 'quote expr) "is" 'val)
6: 'val))

Gary Fredericks Macros: Why, When, and How

1: (defmacro spy
2: [expr]
3: (list 'let
4: ['val expr]
5: (list 'println
6: (list 'quote expr)
7: "is" 'val)
8: 'val))

1: (defmacro spy
2: [expr]
3: `(let [val ~expr]
4: (println '~expr "is" val)
5: val))
6:
7: ;; line 4 is equivalent to
8: ;;
9: ;; (println (quote ~expr) "is" val)

Unquote: Resolution

Gary Fredericks Macros: Why, When, and How

Unquote-Splicing: Problem
Often we have a list of expressions that we want to insert
somewhere

 1: ;; We want
 2: (returning (slurp "data.csv")
 3: (reset! running false)
 4: (println "Done reading file"))
 5:
 6: ;; to expand to
 7: (let [val (slurp "data.csv")]
 8: (reset! running false)
 9: (println "Done reading file")
10: val)

Gary Fredericks Macros: Why, When, and How

1: (defmacro returning
2: [expr & side-effects]
3: `(let [val ~expr]
4: ~side-effects
5: val))

1: (macroexpand-1
2: '(returning x (foo) (bar)))
3:
4: ;; returns:
5:
6: (let [val x]
7: ((foo)
8: (bar))
9: val)

Unquote-Splicing: First try

Gary Fredericks Macros: Why, When, and How

1: (defmacro returning
2: [expr & side-effects]
3: (concat ['let ['val expr]]
4: side-effects
5: ['val]))

1: (macroexpand-1
2: '(returning x (foo) (bar)))
3:
4: ;; returns:
5:
6: (let [val x]
7: (foo)
8: (bar)
9: val)

Unquote-Splicing: Second try

Gary Fredericks Macros: Why, When, and How

1: (defmacro returning
2: [expr & side-effects]
3: `(let [val ~expr]
4: ~@side-effects
5: val))

1: (macroexpand-1
2: '(returning x (foo) (bar)))
3:
4: ;; returns:
5:
6: (let [val x]
7: (foo)
8: (bar)
9: val)

Unquote-Splicing: Third try

Gary Fredericks Macros: Why, When, and How

Unquote Debugging
Syntax-quote can be used outside the context of macros

1: `(1 2 3 (+ 4 5) 6 ~(+ 7 8))
2:
3: ;; => (1 2 3 (+ 4 5) 6 15)
4:
5: (let [nums [5 6 7 8]]
6: `(1 2 ~@nums ~nums))
7:
8: ;; => (1 2 5 6 7 8 [5 6 7 8])

Gary Fredericks Macros: Why, When, and How

1: (ns my.macros)
2:
3: (defmacro returning
4: [expr & side-effects]
5: `(let [val ~expr]
6: ~@side-effects
7: val))

1: (ns my.code
2: (:refer-clojure :exclude [let])
3: (:require [my.macros :refer [returning]]
4: [other.lib :refer [let]]))
5:
6: (defn main
7: []
8: (returning (* 2 3 7)
9: (println "Computed special number")))

Symbol Qualification: Problem
Using a macro defined in another namespace:

Gary Fredericks Macros: Why, When, and How

Symbol Qualification: Resolution
Syntax-quote automatically fully-qualifies symbols based on the
current environment.

1: `first ;; => clojure.core/first
2: `foo ;; => user/foo
3: `if ;; => if
4:
5: `(+ 1 2) ;; => (clojure.core/+ 1 2)

Gary Fredericks Macros: Why, When, and How

1: (ns my.macros)
2:
3: (defmacro returning
4: [expr & side-effects]
5: `(let [val ~expr]
6: ~@side-effects
7: val))

1: (macroexpand-1
2: '(returning (* 2 3 7)
3: (println "Computed special number")))
4:
5: ;; returns (sort of):
6:
7: (clojure.core/let [val (* 2 3 7)]
8: (println "Computed special number")
9: val)

Symbol Qualification: Resolution 2
Using a macro defined in another namespace:

Gary Fredericks Macros: Why, When, and How

Gensym: Problem
Macros that create locals might accidentally shadow things

1: (defn do-math
2: [val]
3: (returning (* 7 val)
4: (println "Just multiplied 7 with" val)))
5:
6: (do-math 2)
7:
8: ;; prints:
9: ;; Just multiplied 7 with 14

Gary Fredericks Macros: Why, When, and How

Gensym: Problem 2
 1: (defn do-math
 2: [val]
 3: (returning (* 7 val)
 4: (println "Just multiplied 7 with" val)))
 5:
 6: ;; Effectively expands to:
 7:
 8: (defn do-math
 9: [val]
10: (let [val (* 7 val)]
11: (println "Just multiplied 7 with" val)
12: val))

Gary Fredericks Macros: Why, When, and How

Gensym: Solution
Any symbols that end in # are expanded to gensyms

1: `foo# ;; => foo__1179__auto__
2:
3: `[foo# bar# foo#] ;; => [foo__1184__auto__
4: ;; bar__1185__auto__
5: ;; foo__1184__auto__]
6:
7: [`foo# `foo#] ;; => [foo__1188__auto__
8: ;; foo__1189__auto__]

Gary Fredericks Macros: Why, When, and How

Gensym: Solution 2
 1: (defmacro returning
 2: [expr & side-effects]
 3: `(let [val# ~expr]
 4: ~@side-effects
 5: val#))
 6:
 7: ;; Effectively expands to:
 8: (defn do-math
 9: [val]
10: (let [val__1168__auto__ (* 7 val)]
11: (println "Just multiplied 7 with" val)
12: val__1168__auto__))

Gary Fredericks Macros: Why, When, and How

Gensym: When to use?
Whenever you create a local in your macro definition.

let , loop

Arguments to a function

Any other macro that expands to one of the above

It's difficult to miss, because if you forget to use it you will end up
with a fully-qualified symbol that will likely not compile.

Gary Fredericks Macros: Why, When, and How

Syntax-quote: Reference
Syntax What it does

~foo insert foo unquoted

~@foo insert foo unquoted and splice its elements in

foo
fully-qualified symbol based on what foo refers to in the
local context

foo#
gensym, same as other uses of foo# in the same
syntax-quote expression

Gary Fredericks Macros: Why, When, and How

(defmacro spy
 "Prints a debug statement with the
 given form and its value, and
 returns the value."
 [expr]
 `(let [val# ~expr]
 (println '~expr "is" val#)
 val#))

(macroexpand-1 '(spy (* 2 3 7)))

;; actually actually returns:

(clojure.core/let
 [val__1133__auto__ (* 2 3 7)]
 (clojure.core/println
 (quote (* 2 3 7))
 "is"
 val__1133__auto__)
 val__1133__auto__)

Syntax-quote: All Together Now

Gary Fredericks Macros: Why, When, and How

Macro Fun

Gary Fredericks Macros: Why, When, and How

Nested Syntax-quotes
``foo ;; => (quote user/foo)

```foo
;; => (clojure.core/seq
;;     (clojure.core/concat (clojure.core/list (quote quote))
;;                          (clojure.core/list (quote user/foo))))

Gary Fredericks Macros: Why, When, and How



`````foo
(clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/seq)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote
clojure.core/concat)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq
(clojure.core/concat (clojure.core/list (quote quote)) (clojure.core/list (quote clojure.core/seq)))))))) (clojure.core/list (clojure.core/seq (clojure.core/concat
(clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/seq)) (clojure.core/list
(clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/concat)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote
clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote quote)) (clojure.core/list (quote clojure.core/concat))))))))
(clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat
(clojure.core/list (quote clojure.core/seq)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/concat)) (clojure.core/list
(clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote quote))
(clojure.core/list (quote clojure.core/list)))))))) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list
(clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/seq)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote
clojure.core/concat)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq
(clojure.core/concat (clojure.core/list (quote quote)) (clojure.core/list (quote quote)))))))) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote
clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote quote)) (clojure.core/list (quote quote))))))))))))))))))))))))))
(clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat
(clojure.core/list (quote clojure.core/seq)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/concat)) (clojure.core/list
(clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote quote))
(clojure.core/list (quote clojure.core/list)))))))) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list
(clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/seq)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote
clojure.core/concat)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote clojure.core/list)) (clojure.core/list (clojure.core/seq
(clojure.core/concat (clojure.core/list (quote quote)) (clojure.core/list (quote quote)))))))) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote
clojure.core/list)) (clojure.core/list (clojure.core/seq (clojure.core/concat (clojure.core/list (quote quote)) (clojure.core/list (quote
user/foo))

Gary Fredericks Macros: Why, When, and How

Recursive ->>
(macroexpand-1 '(->> a b (->> c d)))

;; => (->> (->> a b) (->> c d))

(macroexpand-1
 (macroexpand-1 '(->> a b (->> c d))))

;; => (->> c d (->> a b))

Gary Fredericks Macros: Why, When, and How

(def defmacro ...)
(def

 ^{:doc "Like defn, but the resulting function name is declared as a
 macro and will be used as a macro by the compiler when it is
 called."

:arglists '([name doc-string? attr-map? [params*] body]
 [name doc-string? attr-map? ([params*] body)+ attr-map?])
 :added "1.0"}
defmacro (fn [&form &env
 name & args]
 (let [prefix (loop [p (list name) args args]
 (let [f (first args)]
 (if (string? f)
 (recur (cons f p) (next args))
 (if (map? f)
 (recur (cons f p) (next args))
 p))))
 fdecl (loop [fd args]
 (if (string? (first fd))
 (recur (next fd))
 (if (map? (first fd))
 (recur (next fd))
 fd)))
 fdecl (if (vector? (first fdecl))
 (list fdecl)
 fdecl)
 add-implicit-args (fn [fd]
 (let [args (first fd)]
 (cons (vec (cons '&form (cons '&env args))) (next fd))))
 add-args (fn [acc ds]
 (if (nil? ds)
 acc
 (let [d (first ds)]
 (if (map? d)
 (conj acc d)
 (recur (conj acc (add-implicit-args d)) (next ds))))))
 fdecl (seq (add-args [] fdecl))
 decl (loop [p prefix d fdecl]
 (if p
 (recur (next p) (cons (first p) d))
 d))]
 (list 'do
 (cons `defn decl)
 (list '. (list 'var name) '(setMacro))
 (list 'var name)))))

Gary Fredericks Macros: Why, When, and How

(defmacro dyslexially
 [expr]
 (reverse expr))

(do
 (clojure.core/defn dyslexially
 ([&form &env expr]
 (reverse expr)))
 (. #'dyslexially (setMacro))
 #'dyslexially)

defmacro expansion

Gary Fredericks Macros: Why, When, and How

Macros that write macros
 1: ;; from core.logic
 2:
 3: (defmacro RelHelper [arity]
 4: (let [r (range 1 (+ arity 2))
 5: fs (map f-sym r)
 6: mfs (map #(with-meta % {:volatile-mutable true :tag clojure.lang.IFn})
 7: fs)
 8: create-sig (fn [n]
 9: (let [args (map a-sym (range 1 (clojure.core/inc n)))]
10: `(invoke [~'_ ~@args]
11: (~(f-sym n) ~@args))))
12: set-case (fn [[f arity]]
13: `(~arity (set! ~f ~'f)))]
14: `(do
15: (deftype ~'Rel [~'name ~'indexes ~'meta
16: ~@mfs]
17: clojure.lang.IObj
18: (~'withMeta [~'_ ~'meta]
19: (~'Rel. ~'name ~'indexes ~'meta ~@fs))
20: (~'meta [~'_]
21: ~'meta)
22: clojure.lang.IFn
23: ~@(map create-sig r)
24: (~'applyTo [~'this ~'arglist]
25: (~'apply-to-helper ~'this ~'arglist))
26: ~'IRel
27: (~'setfn [~'_ ~'arity ~'f]
28: (case ~'arity
29: ~@(mapcat set-case (map vector fs r))))
30: (~'indexes-for [~'_ ~'arity]
31: ((deref ~'indexes) ~'arity))
32: (~'add-indexes [~'_ ~'arity ~'index]
33: (swap! ~'indexes assoc ~'arity ~'index)))
34: (defmacro ~'defrel
35: "Define a relation for adding facts. Takes a name and some fields.
36: Use fact/facts to add facts and invoke the relation to query it."
37: [~'name ~'& ~'rest]
38: (defrel-helper ~'name ~arity ~'rest)))))

Gary Fredericks Macros: Why, When, and How

)))))))))))

Gary Fredericks Macros: Why, When, and How

Blatant Omissions
Magical arguments: &form and &env

clojure.tools.macro

local macros (without deffing anything)

symbol macros

Gary Fredericks Macros: Why, When, and How

What was that you said
By taking advantage of homoiconicity, macros give you a
relatively easy way to reduce syntactic repetition and
ceremony, effectively adding new features to the language

They require a decent understanding of how compilation
works

They make your code awkward and hard to reason about if
used unnecessarily

Syntax-quote makes it easier to write safe macros

Gary Fredericks Macros: Why, When, and How

So Thanks

Also thanks to

Andrew Brehaut (@brehaut)

Daniel Glauser (@danielglauser)

Lucas Willett (@ltw_).

Groupon is hiring for Clojure

Gary Fredericks Macros: Why, When, and How

