
Gary Fredericks Purely Random Clojure/West 2015 1 / 81

java.util.Random

1 user> (def r (java.util.Random. 42))

2 #'user/r

3 user> (.nextInt r)

4 -1170105035

5 user> (.nextInt r)

6 234785527

Gary Fredericks Purely Random Clojure/West 2015 2 / 81

java.util.Random in Clojure

1 (defn create

2 [seed]

3 {:state (bit-xor seed 0x5deece66d)})

4

5 (defn next-int

6 [{:keys [^long state]}]

7 (let [new-state (-> state

8 (unchecked-multiply 0x5deece66d)

9 (unchecked-add 0xb))

10 x (-> new-state

11 (bit-shift-right 16)

12 (unchecked-int))]

13 [x {:state new-state}]))

Gary Fredericks Purely Random Clojure/West 2015 3 / 81

Mutable vs. Immutable

1 user> (def r (java.util.Random. 42))

2 #'user/r

3 user> (.nextInt r)

4 -1170105035

5 user> (.nextInt r)

6 234785527

7
8 ;; immutable version

9 user> (def r (create 42))

10 #'user/r

11 user> r

12 {:state 25214903879}

13 user> (next-int r)

14 [-1170105035 {:state 8602080079250839110}]

15 user> (next-int r)

16 [-1170105035 {:state 8602080079250839110}]

17 user> (next-int (second *1))

18 [234785527 {:state 7522434139496587225}]

Gary Fredericks Purely Random Clojure/West 2015 4 / 81

Roadmap

Splittability and Composition

Basic Example, De�nitions

Case Study: test.check
Implementing Splittable RNGs in Clojure

Poorly

Better

Faster

Gary Fredericks Purely Random Clojure/West 2015 5 / 81

Splittability and Composition

Gary Fredericks Purely Random Clojure/West 2015 6 / 81

Splittability and Composition

A Tale of Two Seqs

Gary Fredericks Purely Random Clojure/West 2015 7 / 81

Requirements

1 (defn pair-of-lazy-seqs

2 "Given a seed, returns [xs ys]

3 where xs and ys are both

4 (different) lazy infinite seqs

5 of random numbers."

6 [seed]

7 ;; ???

8)

Gary Fredericks Purely Random Clojure/West 2015 8 / 81

With java.util.Random

1 (defn pair-of-lazy-seqs

2 [seed]

3 (let [r (java.util.Random. seed)]

4 [(repeatedly #(.nextInt r))

5 (repeatedly #(.nextInt r))]))

Gary Fredericks Purely Random Clojure/West 2015 9 / 81

Let's use it

1 (let [[xs ys] (pair-of-lazy-seqs 42)]

2 [(take 4 xs) (take 4 ys)])

3 =>

4 [(-1170105035 234785527 -1360544799 205897768)

5 (1325939940 -248792245 1190043011 -1255373459)]

Gary Fredericks Purely Random Clojure/West 2015 10 / 81

Let's use it

1 (let [[xs ys] (pair-of-lazy-seqs 42)]

2 [(take 4 xs) (take 4 ys)])

3 =>

4 [(-1170105035 234785527 -1360544799 205897768)

5 (1325939940 -248792245 1190043011 -1255373459)]

6

7 (let [[xs ys] (pair-of-lazy-seqs 42)]

8 [(first xs) (first ys)])

9 => [-1170105035 234785527]

Gary Fredericks Purely Random Clojure/West 2015 11 / 81

With java.util.Random

1 (defn pair-of-lazy-seqs

2 [seed]

3 (let [r (java.util.Random. seed)]

4 [(repeatedly #(.nextInt r))

5 (repeatedly #(.nextInt r))]))

Gary Fredericks Purely Random Clojure/West 2015 12 / 81

With the immutable clojure RNG

1 (defn random-nums

2 [rng]

3 (lazy-seq

4 (let [[x rng2] (next-int rng)]

5 (cons x (random-nums rng2)))))

6

7 (defn pair-of-lazy-seqs

8 [seed]

9 (let [rng (create seed)]

10 [(random-nums rng)

11 (random-nums ; ????

12)]))

Gary Fredericks Purely Random Clojure/West 2015 13 / 81

Concept Space

Gary Fredericks Purely Random Clojure/West 2015 14 / 81

With a splittable RNG

1 (defn random-nums
2 [rng]
3 (lazy-seq
4 (let [[rng1 rng2] (split rng)
5 x (rand-int rng1)]
6 (cons x (random-nums rng2)))))
7

8 (defn pair-of-lazy-seqs
9 [seed]
10 (let [rng (create seed)
11 [rng1 rng2] (split rng)]
12 [(random-nums rng1)
13 (random-nums rng2)]))

Gary Fredericks Purely Random Clojure/West 2015 15 / 81

Splittability and Composition

test.check

Gary Fredericks Purely Random Clojure/West 2015 16 / 81

gen-xs-and-x

1 (def gen-xs-and-x

2 "Generates a pair [xs x] where xs is a list of

3 numbers and x is a number in that list."

4 (gen/bind (gen/not-empty (gen/list gen/nat))

5 (fn [xs]

6 (gen/tuple (gen/return xs)

7 (gen/elements xs)))))

8

9 (gen/sample gen-xs-and-x)

10 =>

11 ([(0) 0]

12 [(3 3 0) 0]

13 [(1 2) 2]

14 [(2 0 3 1) 1]

15 [(4 0 1 3) 1]

16 ...)

Gary Fredericks Purely Random Clojure/West 2015 17 / 81

lists-don't-have-duplicates

1 (def lists-don't-have-duplicates

2 (prop/for-all [[xs x] gen-xs-and-x]

3 (let [x-count (->> xs

4 (filter #{x})

5 (count))]

6 (= 1 x-count))))

Gary Fredericks Purely Random Clojure/West 2015 18 / 81

test.check shrinking

1 user> (quick-check 100 lists-don't-have-duplicates)

2 {:fail [[(4 4 5 4 2) 4]],

3 :failing-size 6,

4 :num-tests 7,

5 :result false,

6 :seed 1426989885725,

7 :shrunk {:depth 3,

8 :result false,

9 :smallest [[(4 4) 4]],

10 :total-nodes-visited 16}}

Gary Fredericks Purely Random Clojure/West 2015 19 / 81

test.check shrink tree

Gary Fredericks Purely Random Clojure/West 2015 20 / 81

test.check shrink tree

Gary Fredericks Purely Random Clojure/West 2015 21 / 81

test.check shrink tree

Gary Fredericks Purely Random Clojure/West 2015 22 / 81

test.check

The Problem

the lazy shrink-tree is nondeterministic

The Solution

Use an immutable, splittable RNG.

But where do you �nd such a thing?

Gary Fredericks Purely Random Clojure/West 2015 23 / 81

Splittability and Composition

Summary

Gary Fredericks Purely Random Clojure/West 2015 24 / 81

Okay So

Linear RNGs hinder composition

Programs are either nondeterministic or impossible to write

Splittable RNGs are less common, but composition-friendly

test.check impl is fragile because of its linear RNG

Gary Fredericks Purely Random Clojure/West 2015 25 / 81

Implementations

Gary Fredericks Purely Random Clojure/West 2015 26 / 81

Implementing Splittable RNGs in Clojure

Poorly

Better

Faster

Gary Fredericks Purely Random Clojure/West 2015 27 / 81

Implementations

Low Quality Implementations

Gary Fredericks Purely Random Clojure/West 2015 28 / 81

java.util.Random

Gary Fredericks Purely Random Clojure/West 2015 29 / 81

java.util.Random

Gary Fredericks Purely Random Clojure/West 2015 30 / 81

java.util.Random

Gary Fredericks Purely Random Clojure/West 2015 31 / 81

java.util.Random

Gary Fredericks Purely Random Clojure/West 2015 32 / 81

java.util.Random as a lazy seq

Gary Fredericks Purely Random Clojure/West 2015 33 / 81

java.util.Random: splitting the seq

Gary Fredericks Purely Random Clojure/West 2015 34 / 81

java.util.Random

Gary Fredericks Purely Random Clojure/West 2015 35 / 81

java.util.Random as 1 32-count sequence

Gary Fredericks Purely Random Clojure/West 2015 36 / 81

java.util.Random as 2 16-count sequences

Gary Fredericks Purely Random Clojure/West 2015 37 / 81

java.util.Random as 4 8-count sequences

Gary Fredericks Purely Random Clojure/West 2015 38 / 81

java.util.Random as 8 4-count sequences

Gary Fredericks Purely Random Clojure/West 2015 39 / 81

java.util.Random as 16 2-count sequences

Gary Fredericks Purely Random Clojure/West 2015 40 / 81

java.util.Random as 32 1-count sequences

Gary Fredericks Purely Random Clojure/West 2015 41 / 81

Haskell's System.Random

1 stdSplit :: StdGen -> (StdGen, StdGen)

2 stdSplit std@(StdGen s1 s2)

3 = (left, right)

4 where

5 -- no statistical foundation for this!

6 left = StdGen new_s1 t2

7 right = StdGen t1 new_s2

8
9 new_s1 | s1 == 2147483562 = 1

10 | otherwise = s1 + 1

11
12 new_s2 | s2 == 1 = 2147483398

13 | otherwise = s2 - 1

14
15 StdGen t1 t2 = snd (next std)

Gary Fredericks Purely Random Clojure/West 2015 42 / 81

The Lesson

Splittabilizing a linear algorithm can be tricky.

Gary Fredericks Purely Random Clojure/West 2015 43 / 81

Implementations

High Quality Implementations

Gary Fredericks Purely Random Clojure/West 2015 44 / 81

Splittable Pseudorandom Number Generators
using Cryptographic Hashing

Koen Claessen Michał H. Pałka
Chalmers University of Technology

koen@chalmers.se michal.palka@chalmers.se

Abstract
We propose a new splittable pseudorandom number generator
(PRNG) based on a cryptographic hash function. Splittable PRNGs,
in contrast to linear PRNGs, allow the creation of two (seemingly)
independent generators from a given random number generator.
Splittable PRNGs are very useful for structuring purely functional
programs, as they avoid the need for threading around state. We
show that the currently known and used splittable PRNGs are either
not efficient enough, have inherent flaws, or lack formal arguments
about their randomness. In contrast, our proposed generator can
be implemented efficiently, and comes with a formal statements
and proofs that quantify how ‘random’ the results are that are
generated. The provided proofs give strong randomness guarantees
under assumptions commonly made in cryptography.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Algorithms, Languages

Keywords splittable pseudorandom number generators, provable
security, Haskell

1. Introduction
Splittable pseudorandom number generators (PRNGs) are very useful
for structuring purely functional programs that deal with random-
ness. They allow different parts of the program to independently
(without interaction) generate random values, thus avoiding the
threading of a random seed through the whole program [10]. More-
over, splittable PRNGs are essential when generating random infinite
values, such as random infinite lists in a lazy language, or random
functions. In addition, deterministic distribution of parallel random
number streams, which is of interest to the High-Performance Com-
puting community [22, 26], can be realised using splitting.

In Haskell, the standard module System.Random provides a
default implementation of a splittable generator StdGen, with the
following API:

split :: StdGen -> (StdGen, StdGen)
next :: StdGen -> (Int, StdGen)

[Copyright notice will appear here once ’preprint’ option is removed.]

The function split creates two new, independent generators from
a given generator. The function next can be used to create one
random value. A user of this API is not supposed to use both next
and split on the same argument; doing so voids all warranties
about promised randomness.

The property-based testing framework QUICKCHECK [13]
makes heavy use of splitting. Let us see it in action. Consider
the following simple (but somewhat contrived) property:

newtype Int14 = Int14 Int
deriving Show

instance Arbitrary Int14 where
arbitrary = Int14 ‘fmap‘ choose (0, 13)

prop_shouldFail (_, Int14 a) (Int14 b) = a /= b

We define a new type Int14 for representing integers from 0 to 13.
Next, we create a random generator for it that randomly picks a
number from 0 to 13. Finally, we define a property, which states that
two randomly picked Int14 numbers, one of which is a component
of a randomly picked pair, are always unequal.

Testing the property yields the following result:

*Main> quickCheckWith
stdArgs { maxSuccess = 10000 } prop_shouldFail

+++ OK, passed 10000 tests.

Even though the property is false (we would expect one of every 14
tests to fail), all 10000 tests succeed!

The reason for this surprising behaviour is a previously unknown
flaw in the standard Haskell pseudorandom number generator
used by QUICKCHECK during testing. The PRNG should pick all
combinations of numbers 0–13 for a and b, but in fact combinations
where a and b are the same number are never picked.

It turns out that the StdGen standard generator used in current
Haskell compilers contains an ad hoc implementation of splitting.
The current implementation is the source of the randomness flaw1

demonstrated above. The flaw requires a particular pattern of split
operations to manifest and results in very strong correlation of
generated numbers. In fact, when 13 in the Int14 generator is
replaced by other numbers from range 1–500, the problem arises for
465 of them! Unfortunately, this pattern of splits is simple and likely
to arise often in typical usage of QuickCheck. Because of this, we
cannot be sure that QuickCheck properties that pass a large number
of tests are true with high probability.

Unfortunately, research devoted to pseudorandom generation
has mainly concentrated on linear generators, which do not support
on-demand splitting. Several attempts have been made at extending

1 http://hackage.haskell.org/trac/ghc/ticket/3575 and .../
3620

To appear in the Proceedings of Haskell Symposium 2013 1 2013/9/15

Gary Fredericks Purely Random Clojure/West 2015 45 / 81

Splitting Tree

1 (let [rng1 (make-rng seed)

2 [rng2 rng3] (split rng1)

3 x1 (rand-long rng2)

4 [rng4 rng5] (split rng3)

5 x2 (rang-long rng4)]

6 "hooray")

Gary Fredericks Purely Random Clojure/West 2015 46 / 81

Linear Tree

Gary Fredericks Purely Random Clojure/West 2015 47 / 81

Balanced Tree

Gary Fredericks Purely Random Clojure/West 2015 48 / 81

Pseudorandom Function

Gary Fredericks Purely Random Clojure/West 2015 49 / 81

Tree Path

Gary Fredericks Purely Random Clojure/West 2015 50 / 81

SHA1Random

1 (deftype SHA1Random [seed path]
2

3 IRandom
4

5 (rand-long [_]
6 (bytes->long (sha1 (str seed path))))
7

8 (split [_]
9 [(SHA1Random. seed (conj path 0))
10 (SHA1Random. seed (conj path 1))]))
11

12 (defn sha1-random
13 [seed]
14 (SHA1Random. seed []))

Gary Fredericks Purely Random Clojure/West 2015 51 / 81

Implementations

Testing Quality

Gary Fredericks Purely Random Clojure/West 2015 52 / 81

Dieharder

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

Usage:

dieharder [-a] [-d dieharder test number] [-f filename] [-B]

[-D output flag [-D output flag] ...] [-F] [-c separator]

[-g generator number or -1] [-h] [-k ks_flag] [-l]

[-L overlap] [-m multiply_p] [-n ntuple]

[-p number of p samples] [-P Xoff]

[-o filename] [-s seed strategy] [-S random number seed]

[-n ntuple] [-p number of p samples] [-o filename]

[-s seed strategy] [-S random number seed]

[-t number of test samples] [-v verbose flag]

[-W weak] [-X fail] [-Y Xtrategy]

[-x xvalue] [-y yvalue] [-z zvalue]

Gary Fredericks Purely Random Clojure/West 2015 53 / 81

Linearization

Gary Fredericks Purely Random Clojure/West 2015 54 / 81

Linearization - Right Linear

Gary Fredericks Purely Random Clojure/West 2015 55 / 81

Linearization - Left Linear

Gary Fredericks Purely Random Clojure/West 2015 56 / 81

Linearization - Alternating

Gary Fredericks Purely Random Clojure/West 2015 57 / 81

Linearization - Balanced

Gary Fredericks Purely Random Clojure/West 2015 58 / 81

Linearization - Right Lumpy

Gary Fredericks Purely Random Clojure/West 2015 59 / 81

Linearization - Left Lumpy

Gary Fredericks Purely Random Clojure/West 2015 60 / 81

Linearization - Fibonacci

Gary Fredericks Purely Random Clojure/West 2015 61 / 81

Dieharder Results

Algorithm Linearization PASSED WEAK FAIL

j.u.Random (inherent) 95 13 6

SHA1 left-linear 111 3 0
SHA1 right-linear 112 2 0
SHA1 alternating 114 0 0
SHA1 left-lumpy 110 4 0
SHA1 right-lumpy 112 2 0
SHA1 balanced 112 2 0
SHA1 �bonacci 109 5 0

Gary Fredericks Purely Random Clojure/West 2015 62 / 81

Implementations

Less Slow Implementations

Gary Fredericks Purely Random Clojure/West 2015 63 / 81

Varying the hash function

Try a faster (noncryptographic?) pseudorandom
function, test its quality.

Gary Fredericks Purely Random Clojure/West 2015 64 / 81

java.util.SplittableRandom

1 public class SplittableRandom{

2

3 public SplittableRandom(long seed){...}

4

5 public long nextLong(){...};

6

7 public SplittableRandom split(){...};

8

9 }

Gary Fredericks Purely Random Clojure/West 2015 65 / 81

The java.util.SplittableRandom Algorithm

Gary Fredericks Purely Random Clojure/West 2015 66 / 81

(SplittableRandom. 24)

Gary Fredericks Purely Random Clojure/West 2015 67 / 81

(-> 24 (SplittableRandom.) (.nextLong))

Gary Fredericks Purely Random Clojure/West 2015 68 / 81

(-> 24 (SplittableRandom.) (.split))

Gary Fredericks Purely Random Clojure/West 2015 69 / 81

(deftype IJUSR ...)

1 (deftype IJUSR [^long gamma ^long state]

2 IRandom

3 (rand-long [_]

4 (-> state (+ gamma) (mix-64)))

5 (split [this]

6 (let [state1 (+ gamma state)

7 state2 (+ gamma state1)

8 new-state (mix-64 state1)

9 new-gamma (mix-gamma state2)]

10 [(IJUSR. gamma state2)

11 (IJUSR. new-gamma new-state)])))

Gary Fredericks Purely Random Clojure/West 2015 70 / 81

Benchmarks

lin
ear

left-lin
ear

rig
h
t-lin

ear

altern
atin

g

left-lu
m
py

rig
h
t-lu

m
py

b
alan

ced

�
b
o
n
acci

0

50

100

150

m
ill
is
ec
o
n
d
s

Criterium tests XORing 1,000,000 random numbers

JUR IJUSR

Gary Fredericks Purely Random Clojure/West 2015 71 / 81

Benchmarks w/ SHA1

lin
ear

left-lin
ear

rig
h
t-lin

ear

altern
atin

g

left-lu
m
py

rig
h
t-lu

m
py

b
alan

ced

�
b
o
n
acci

0

500

1,000

m
ill
is
ec
o
n
d
s

Criterium tests XORing 1,000,000 random numbers

JUR IJUSR SHA1

Gary Fredericks Purely Random Clojure/West 2015 72 / 81

Dieharder Results

Algorithm Linearization PASSED WEAK FAIL

j.u.Random (inherent) 95 13 6

SHA1 left-linear 111 3 0
SHA1 right-linear 112 2 0
SHA1 alternating 114 0 0
SHA1 left-lumpy 110 4 0
SHA1 right-lumpy 112 2 0
SHA1 balanced 112 2 0
SHA1 �bonacci 109 5 0

IJUSR left-linear 108 6 0
IJUSR right-linear 111 3 0
IJUSR alternating 109 5 0
IJUSR left-lumpy 113 1 0
IJUSR right-lumpy 114 0 0
IJUSR balanced 114 0 0
IJUSR �bonacci 111 3 0

Gary Fredericks Purely Random Clojure/West 2015 73 / 81

Implementations

Summary

Gary Fredericks Purely Random Clojure/West 2015 74 / 81

Okay So

Linear RNGs cannot be trivially splittabilized

Recent research provides promising options

Gary Fredericks Purely Random Clojure/West 2015 75 / 81

Epilogue

Gary Fredericks Purely Random Clojure/West 2015 76 / 81

Convert test.check to JavaUtilSplittableRandom

[org.clojure/test.check "0.8.0-ALPHA"]

Gary Fredericks Purely Random Clojure/West 2015 77 / 81

Slowdown

Measuring the slowdown on test.check's own test suite.

(bench (clojure.test/run-all-tests))

Before 3.06 ± 0.045 seconds

After 3.56 ± 0.058 seconds

16.3% slower

lein benchmark-task 20 test

Before 7.62 ± 0.182 seconds

After 8.34 ± 0.210 seconds

9.3% slower

Gary Fredericks Purely Random Clojure/West 2015 78 / 81

Empossibleized Future Features

Parallelizing tests

Resuming shrinks

Parallelized shrinks

Custom shrinking algorithms

Generating lazy seqs

Replaying a particular test with a speci�c "seed"

Gary Fredericks Purely Random Clojure/West 2015 79 / 81

We Have Come Now To The End

Splittable RNGs are necessary for composing
functional programs

There are existing splittable algorithms, including
java.util.SplittableRandom

Using the SplittableRandom algorithm made
test.check more robust

Gary Fredericks Purely Random Clojure/West 2015 80 / 81

Thank You

And also thanks to

Reid Draper

Alex Miller

Bibliography
Claessen, K. ; Palka, M. (2013) "Splittable Pseudorandom Number Generators using
Cryptographic Hashing". Proceedings of Haskell Symposium 2013 pp. 47-58.

Guy L. Steele, Jr., Doug Lea, and Christine H. Flood. 2014. Fast splittable pseudorandom
number generators. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA '14). ACM, New York,
NY, USA, 453-472. DOI=10.1145/2660193.2660195
http://doi.acm.org/10.1145/2660193.2660195

Gary Fredericks Purely Random Clojure/West 2015 81 / 81

http://doi.acm.org/10.1145/2660193.2660195

	Latex Prelude
	Intro
	Hook
	Roadmap

	Splittability and Composition
	A Tale of Two Seqs
	test.check
	Summary

	Implementations
	Low Quality Implementations
	High Quality Implementations
	Testing Quality
	Less Slow Implementations
	Summary

	Epilogue
	Wrapping it Up

