Purely Random Gary Frederick
Clojure/ West 2015 H

java.util.Random

```
1 \mp@code { u s e r > ~ ( d e f ~ r ~ ( j a v a . u t i l . R a n d o m . ~ 4 2 ) ) }
#'user/r
user> (.nextInt r)
-1170105035
user> (.nextInt r)
234785527
```


java.util. Random in Clojure

```
(defn create
    [seed]
    \{:state (bit-xor seed 0x5deece66d)\})
    (defn next-int
    [\{:keys [^long state] \(\}]\)
    (let [new-state (-> state
                (unchecked-multiply 0x5deece66d)
                                    (unchecked-add 0xb))
        x (-> new-state
            (bit-shift-right 16)
            (unchecked-int))]
        [x \{:state new-state\}]))
```


Mutable vs. Immutable

```
1 user> (def r (java.util.Random. 42))
2 #'user/r
3
user> (.nextInt r)
-1170105035
user> (.nextInt r)
234785527
;; immutable version
user> (def r (create 42))
#'user/r
user> r
{:state 25214903879}
user> (next-int r)
[-1170105035 {:state 8602080079250839110}]
user> (next-int r)
[-1170105035 {:state 8602080079250839110}]
user> (next-int (second *1))
[234785527 {:state 7522434139496587225}]
```


Roadmap

- Splittability and Composition
- Basic Example, Definitions
- Case Study: test.check
- Implementing Splittable RNGs in Clojure
- Poorly
- Better
- Faster

Splittability and Composition

Splittability and Composition A Tale of Two Seqs

Requirements

1 (defn pair-of-lazy-seqs

$$
2
$$ "Given a seed, returns [xs ys] where xs and ys are both (different) lazy infinite seqs of random numbers." [seed]

; ; ???
)

With java.util.Random

1 (defn pair-of-lazy-seqs
[seed]
(let [r (java.util.Random. seed)]
[(repeatedly \#(.nextInt r)) (repeatedly \#(.nextInt r))]))

Let's use it

Let's use it

```
1 (let [[xs ys] (pair-of-lazy-seqs 42)]
    [(take 4 xs) (take 4 ys)])
=>
[(-1170105035 234785527 -1360544799 205897768)
    (1325939940 -248792245 1190043011 -1255373459)]
(let [[xs ys] (pair-of-lazy-seqs 42)]
    [(first xs) (first ys)])
    => [-1170105035 234785527]
```


With java.util.Random

```
1 (defn pair-of-lazy-seqs [seed]
(let [r (java.util.Random. seed)]
[(repeatedly \#(.nextInt r)) (repeatedly \#(.nextInt r))]))
```


With the immutable clojure RNG

```
1 (defn random-nums
    [rng]
    (lazy-seq
        (let [[x rng2] (next-int rng)]
        (cons x (random-nums rng2)))))
        (defn pair-of-lazy-seqs
        [seed]
        (let [rng (create seed)]
        [(random-nums rng)
        (random-nums ; ????
        )]))
```


With a splittable RNG

Splittability and Composition

test.check

gen-xs -and-x

(def gen-xs-and-x
"Generates a pair [xs x] where xs is a list of
numbers and x is a number in that list."
(gen/bind (gen/not-empty (gen/list gen/nat))
(fn [xs]
(gen/tuple (gen/return xs)
(gen/elements xs)))))
(gen/sample gen-xs-and-x)
=>
([(0) 0]
$\left[\begin{array}{lll}\left(\begin{array}{lll}3 & 3 & 0)\end{array}\right]\end{array}\right]$
$\left[\begin{array}{lll}(1 & 2) & 2\end{array}\right]$
$\left[\begin{array}{llll}\left(\begin{array}{llll}2 & 0 & 3 & 1\end{array}\right) & 1\end{array}\right]$
$\left[\begin{array}{llll}\left(\begin{array}{llll}4 & 0 & 1 & 3\end{array}\right) & 1\end{array}\right]$
...)

lists-don't-have-duplicates

1	(def lists-don't-have-duplicates
2	(prop/for-all [[xs x] gen-xs-and-x]
3	(let [x-count (->> xs
4	(filter \#\{x\})
5	(count))]
6	(= 1 x -count))))

test.check shrinking

```
1 user> (quick-check 100 lists-don't-have-duplicates)
2 \{:fail [[(4 \(4 \times 542)\) 4]],
3 :failing-size 6,
4 :num-tests 7,
5 :result false,
6 :seed 1426989885725,
    :shrunk \{:depth 3,
                            :result false,
                            :smallest [[(4 4) 4]],
                            :total-nodes-visited 16\}\}
```

test. check shrink tree
test. check shrink tree

test. check shrink tree

test.check

The Problem

- the lazy shrink-tree is nondeterministic

The Solution

- Use an immutable, splittable RNG.
- But where do you find such a thing?

Splittability and Composition

Summary

Okay So

- Linear RNGs hinder composition
- Programs are either nondeterministic or impossible to write
- Splittable RNGs are less common, but composition-friendly
- test.check impl is fragile because of its linear RNG

Implementations

Implementing Splittable RNGs in Clojure

- Poorly
- Better
- Faster

Implementations
 Low Quality Implementations

java.util.Random

java.util.Random

new R andom 42) $\rightarrow 0 \times 00000000002 \mathrm{~A}$ $\frac{\oplus 0 \times 0005 \text { DEECE66D }}{\downarrow}$ OXOOO5DEECE 647

java.util.Random

java.util.Random

java.util. Random as a lazy seq

java.util.Random: splitting the seq

java.util.Random

java.util.Random as 1 32-count sequence

java.util. Random as 2 16-count sequences

java.util. Random as 4 8-count sequences

java.util. Random as 8 4-count sequences

java.util. Random as 16 2-count sequences

java.util. Random as 32 1-count sequences

Haskell's System.Random

The Lesson

Splittabilizing a linear algorithm can be tricky.

Implementations

High Quality Implementations

Splittable Pseudorandom Number Generators using Cryptographic Hashing

Koen Claessen Michał H. Pałka
Chalmers University of Technology
koen@chalmers.se michal.palka@chalmers.se

Abstract

We propose a new splittable pseudorandom number generator (PRNG) based on a cryptographic hash function. Splittable PRNGS, in contrast to linear PRNGS, allow the creation of two (seemingly) independent generators from a given random number generator. Splittable PRNGs are very useful for structuring purely functional programs, as they avoid the need for threading around state. We show that the currently known and used splittable PRNGS are either not efficient enough, have inherent flaws, or lack formal arguments about their randomness. In contrast, our proposed generator can be implemented efficiently, and comes with a formal statements and proofs that quantify how 'random' the results are that are generated. The provided proofs give strong randomness guarantees under assumptions commonly made in cryptography.

The function split creates two new, independent generators from a given generator. The function next can be used to create one random value. A user of this API is not supposed to use both next and split on the same argument; doing so voids all warranties about promised randomness.

The property-based testing framework QuicкСНеск [13] makes heavy use of splitting. Let us see it in action. Consider the following simple (but somewhat contrived) property:

```
newtype Int14 = Int14 Int
    deriving Show
instance Arbitrary Int14 where
    arbitrary = Int14 'fmap' choose (0, 13)
```


Splitting Tree

```
(let [rng1 (make-rng seed)
    [rng2 rng3] (split rng1)
    x1 (rand-long rng2)
    [rng4 rng5] (split rng3)
    x2 (rang-long rng4)]
    "hooray")
```


Linear Tree

Balanced Tree

$$
\begin{aligned}
& (f 42) \Rightarrow 0 \\
& (f 43) \Rightarrow \text { ? }
\end{aligned}
$$

Tree Path

SHA1Random

```
1 (deftype SHA1Random [seed path]
    IRandom
    (rand-long [_]
    (bytes->long (sha1 (str seed path))))
    (split [_]
    [(SHA1Random. seed (conj path 0))
        (SHA1Random. seed (conj path 1))]))
    (defn sha1-random
    [seed]
    (SHA1Random. seed []))
```


Implementations

Testing Quality

Dieharder

```
#===============================================================================
# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
#===============================================================================
```

Usage:
dieharder [-a] [-d dieharder test number] [-f filename] [-B]
[-D output flag [-D output flag] ...] [-F] [-c separator]
[-g generator number or -1] [-h] [-k ks_flag] [-l]
[-L overlap] [-m multiply_p] [-n ntuple]
[-p number of p samples] [-P Xoff]
[-o filename] [-s seed strategy] [-S random number seed]
[-n ntuple] [-p number of p samples] [-o filename]
[-s seed strategy] [-S random number seed]
[-t number of test samples] [-v verbose flag]
[-W weak] [-X fail] [-Y Xtrategy]
[-x xvalue] [-y yvalue] [-z zvalue]

Linearization

Linearization - Right Linear

Linearization - Left Linear

Linearization - Alternating

Linearization - Balanced

Linearization - Right Lumpy

Linearization - Left Lumpy

Linearization - Fibonacci

Dieharder Results

Algorithm	Linearization	PASSED	WEAK	FAIL
j.u.Random	(inherent)	95	13	6
SHA1	left-linear	111	3	0
SHA1	right-linear	112	2	0
SHA1	alternating	114	0	0
SHA1	left-lumpy	110	4	0
SHA1	right-lumpy	112	2	0
SHA1	balanced	112	2	0
SHA1	fibonacci	109	5	0

Implementations

Less Slow Implementations

Varying the hash function

Try a faster (noncryptographic?) pseudorandom function, test its quality.

java.util.SplittableRandom

1	public class SplittableRandom\{
2	
3	public SplittableRandom(long seed)\{...\}
4	
5	public long nextLong()\{...\};
6	
7	public SplittableRandom $\operatorname{split()\{ ...\} ;}$
8	
9	$\}$

The java.util.SplittableRandom Algorithm

(SplittableRandom. 24)

(-> 24 (SplittableRandom.) (.nextLong))

(-> 24 (SplittableRandom.) (.split))

(deftype IJUSR ...)

1	(deftype IJUSR [^long gamma ^long state]
2	IRandom
3	(rand-long [_]
4	(-> state (+ gamma) (mix-64)))
5	(split [this]
6	(let [state1 (+ gamma state)
7	State2 (+ gamma state1)
8	new-state (mix-64 state1)
9	new-gamma (mix-gamma state2)]
10	[(IJUSR. gamma state2)
11	(IJUSR. new-gamma new-State)])))

Benchmarks

Criterium tests XORing $1,000,000$ random numbers

Benchmarks w/ SHA1

Criterium tests XORing 1,000,000 random numbers

Dieharder Results

Algorithm	Linearization	PASSED	WEAK	FAIL
j.u.Random	(inherent)	95	13	6
SHA1	left-linear	111	3	0
SHA1	right-linear	112	2	0
SHA1	alternating	114	0	0
SHA1	left-lumpy	110	4	0
SHA1	right-lumpy	112	2	0
SHA1	balanced	112	2	0
SHA1	fibonacci	109	5	0
IJUSR	left-linear	108	6	0
IJUSR	right-linear	111	3	0
IJUSR	alternating	109	5	0
IJUSR	left-lumpy	113	1	0
IJUSR	right-lumpy	114	0	0
IJUSR	balanced	114	0	0
IJUSR	fibonacci	111	3	0

Implementations

Summary

Okay So

- Linear RNGs cannot be trivially splittabilized - Recent research provides promising options

Epilogue

Convert test.check to JavaUtilSplittableRandom

[org.clojure/test.check "0.8.0-ALPHA"]

Slowdown

Measuring the slowdown on test.check's own test suite.

(bench (clojure.test/run-all-tests))

$$
\begin{array}{ll}
\text { Before } & 3.06 \pm 0.045 \text { seconds } \\
\text { After } & 3.56 \pm 0.058 \text { seconds }
\end{array}
$$

16.3% slower

lein benchmark-task 20 test
Before 7.62 ± 0.182 seconds
After $\quad 8.34 \pm 0.210$ seconds
9.3\% slower

Empossibleized Future Features

- Parallelizing tests
- Resuming shrinks
- Parallelized shrinks
- Custom shrinking algorithms
- Generating lazy seqs
- Replaying a particular test with a specific "seed"

We Have Come Now To The End

- Splittable RNGs are necessary for composing functional programs
- There are existing splittable algorithms, including java.util.SplittableRandom
- Using the SplittableRandom algorithm made test.check more robust

Thank You

And also thanks to

- Reid Draper
- Alex Miller

Bibliography

- Claessen, K. ; Palka, M. (2013) "Splittable Pseudorandom Number Generators using Cryptographic Hashing". Proceedings of Haskell Symposium 2013 pp. 47-58.
- Guy L. Steele, Jr., Doug Lea, and Christine H. Flood. 2014. Fast splittable pseudorandom number generators. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages \& Applications (OOPSLA '14). ACM, New York, NY, USA, 453-472. DOI $=10.1145 / 2660193.2660195$ http://doi.acm.org/10.1145/2660193.2660195

